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Scattering of two gravitating particles: classical approach 

Miguel Portilla 
Departamento de Mecanica y Astronomia, Facultad de Matematicas, Burjasot, Valencia, 
Spain 

Received 5 July 1979 in final form 9 May 1980 

Abstract. The scattering of two gravitating particles is studied, using a predictive system to 
first order in G. The centre of mass differential cross section is given. When one or both 
masses are taken to be zero, the scattering of light-scalar particles and light-light is 
obtained. A!I the results are in agreement with those based upon the quantised linearised 
theory. 

1. Introduction 

In a preceding paper (Portilla 1979), an approximate predictive system for two 
gravitating particles was obtained up to first order in G. The Hamilton-Jacobi 
momenta of the particles, the total four-momentum and the angular intrinsic momen- 
tum were deduced up to the same order. 

We can expect these first-order results to be useful in the case of high velocities. In 
this paper a direct application of this result is made for the scattering of two gravitating 
particles, since in this problem the fast-motion condition may be fulfilled. We are 
limited to a large impact parameter, d, such that G m / d  K 1. Here m is the mass of any 
one of the particles, and we use unities such that c = 1. 

The study of two-particle scattering is greatly simplified taking into account that the 
four-momentum involved remains constant along the world lines of the particles 
(Lapiedra 1979). Therefore, we must simply establish the equality between the values 
of these quantities at past infinity (initial state) and the values at future infinity (final 
state). 

Throughout this paper, the same notation and formalism developed by Portilla 
(1979) will be used. In particular we will label the Hamilton-Jacobi momenta by p a  
with a = 1 ,2 ;  the total four-momentum by P = p1 + p 2 ;  and the angular intrinsic 
momentum by W. In this reference the infinite past limits of these quantities have been 
given. They are 
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where I refers to the initial state, and WO is the angular intrinsic momentum cor- 
responding to isolated particles, 

w,” = M-1S’”0%pnlyr12S 

M = (m: + m; + 2 ~ ) ” ~  

x’” = x f  -xg. 

We also need the future limits, which are easily calculated, and the result is 

(1.3) 

where F refers to the final state. 
This paper is arranged as follows. In 0 2 the centre of mass differential cross section is 
obtained even when the masses are comparable. In § 3 the case in which one or both 
masses have zero rest mass is considered, leading us to the description of some features 
of the gravitational interaction of light. 

2. The centre of mass differential cross section 

Let us first consider the total four-momentum and the angular intrinsic momentum. 
We have seen that they have, at future infinity, the same expressions as the ones 
corresponding to isolated particles. Then, from the conservation of the total four- 
momentum we get 

(2.1) IIf1+ n,”, = IlfF + II& 
and in the centre of mass frame, P = 0, the usual relations are available. 

n = n11. 

In the centre of mass frame, and for simultaneous configurations x ?  = x:, the initial and 
final intrinsic momentum three-vectors WO, and WOF can be written 

WO1 =XI x n11 WOF = XF x nlF. (2.3) 

The moduli of these three-vectors give us the initial and final impact parameters 

I WO11 = In1 dI 1 WOFI = In1 dF. (2.4) 

Taking into account the conservation of the intrinsic momentum, it is clear that these 
parameters are equal, i.e. dI = dF. This is a consequence of the fact that to first order, 
the intrinsic momentum also contains, at future infinity, the expression corresponding 
to isolated particles. 
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Let us now consider the Hamilton-Jacobi momentum. As it is conserved along the 
world lines, we have 

lim PY= lim P? 
x’+wp X’+WF 

and using the expressions given in (1.1,2) we obtain 

II’;;=IT&+ G[2(K2+A2)/Ah2]h” (2.6) 
where all the quantities on the right-hand side correspond to the final state. We must 
keep in mind that the scalar Lorentz h = ( h 2 )  is equal to the impact parameter 
hI = hF = d ,  in the centre of mass frame and for xy = x i ,  Then the last equation (2.6) 
gives us the four-momentum transfer A’ = flyF”,- IIYI as a function of the impact 
parameter: 

A” -G[2(K2 + A2)/Ah2]h”. (2.7) 

A2 = 41III2 sin2(X/2) (2.8) 

A’= 2m2T2. (2.9) 

As is well known (Sard 1970) the four-momentum transfer squared A2 is related to the 
scattering angle in the centre of mass frame as 

and to the kinetic energy Tz, acquired by the struck particle, initially at rest, as 

Squaring (2.7) and using (2.8) and (2.9) we obtain 

2G2(K2 + A2)2 
m2A2h2 ‘ 

T2 = 

(2.10) 

(2.11) 

From (2.10) we can evaluate the differential cross section in the centre of mass frame 

1 
(2.12) 

d o =  211. sin x dX. 

Let us express K, A, /III2 in terms of the energy in the centre of mass frame, Po: 
~ = $ [ ~ ~ ‘ - - m : - m 2 2 ]  (2.13) 

A’ = $[PO’ - (ml + m2)2][~0’ - (mi  - m2) 1 
lIII2 = A2/P0’.  

2 

Finally, the cross section can be written in terms of Po as: 

(2.14) 

This expression reduces, for low velocities, to the Rutherford nonrelativistic cross 
section 
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where m is the reduced mass mlm2/(ml + m2), and V, = VII- VZI is the initial relative 
velocity. 

Let us observe the behaviour of formula (2.14) when the velocities of the particles 
are so great that we can consider a = 1 ,2 .  The cross section reduces to 

dor G2P02 
dR sin4(x/2) 
-= (2.1.5) 

We see that the cross section increases with the energy. This is completely different 
from the behaviour corresponding to the electromagnetic interaction. Bel (1976) and 
Lapiedra (1979) have obtained, in the framework of predictive electrodynamics, a cross 
section which in the limit considered above reduces to 

d u  e:e; 
CKI - PO' sin4(x/2) ' 
_ -  

This strange dependence upon the energy may be explained intuitively as a 
consequence of the equivalence principle. This principle is based on the assumption 
that gravity becomes more important at higher energies, since on increasing the energy 
each particle will appear heavier to the others and the gravitational effects will be 
augmented. The scattering angle, for example, according to the above assumption must 
be an increasing function of the energy. 
From formula (2.10) we can obtain the expression of this dependence 

(2.16) 

and for Po >> m l ;  m2 we have 

sin &y - 2GPo/12. (2.1 7 )  

We shall finish this section with two comments about the quantum field calculations. 
Firstly, let us point out that, just as predictive electrodynamics gives the same relativistic 
differential cross section as the lower order in quantum electrodynamics (Lapiedra 
19791, so the gravitational cross section obtained here is in agreement with the 
linearised quantum theory, see for example Gupta (1952) and Scadron (1979). 

Secondly, there is a general result about the asymptotic behaviour of the differential 
cross section, assuming the dominance of one particle exchange of spin J in the 
t-channel (Muirhead 1972). The result is 

d a l d t  ix S2'-' for s -+ a3 and t fixed (2.18) 

where s and t are the scalars defined by 

s = -(lI11 + r l 2 3  = PO2 
2 2 t = -(IT1F-I111) = -A . 

In the gravitational case, one graviton exchange corresponds to J = 2 .  Taking into 
account the relations 

t -- -s sin2 tx 
s = PO2 
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we can obtain from (2.15) 

duldt  cc S 2  

which coincides with (2.18) for J = 2. 

s -* CO, t fixed 

3. Some features of gravitational light scattering 

Let us consider now formulae (2.14) and (2.16) for fixed initial energies. We shall 
obtain a description of the light-light and light-scalar particle by making the limits 
ml-* 0, m2+ 0 and ml-* 0, m 2  = constant. So we have 

3.1. Gravitational light-light scattering 

Differential cross section (in the centre of mass frame) 

dcrldn = 6 4 G 2 K 2 / x 4 .  

Scattering angle 

,y = 8 G K / h ,  

K being the photon energy. In both formulae we have taken 
1 1  sin T X  - T X .  

3.2. Gravitational light-scalar particle 

d u / d n =  16GZPo2/x4  

,y = 4 G P Q / h  

P a = K + ( K 2 + m 2 )  . 2 1 /2  

(3.3) 

(3.4) 

These results coincide nicely with those obtained by Westervelt (1970) starting from the 
gravitational field due to a delta-function photon (Westervelt 1965). As was pointed 
out by the same author (1970) the classical calculations agree, for small angles, with the 
ones obtained in the framework of the quantised linearised theory (Boccaletti 1969, 
Barker et a1 1466, 1967). 

If we interpret m2, in the formula (3.4),  as the mass of an astronomical object we 
have ,y = 4 m 2 G / h .  This is just the value predicted by General Relativity using the 
Schwartschild metric, and assuming the photon to be moving along a null geodesic. 
From formula (2.11) we can obtain an interesting result. Once the particle and the 
photon have been scattered, the former, assumed initially at rest, acquires a kinetic 
energy given by (2.11). One can obtain the values of K 2  and h2, by substituting into 
(2.13) ml = 0 and (Po)’ = m i  +2m2E1,  where EI  is the initial photon energy in the rest 
frame of the particle. So we have 

(3.5) K 2  = h2 = mzE:. 

From (2.11) and (3.5) we get 

T2 = 8G2m2E:/h2.  (3.6) 
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However, T2 is just the diminution of the photon energy, therefore (3.6) gives us a 
redshift of second order in G 

(3.7) 
V I - V F  8G2m: El 

VI h2 m2 
-- ~- - 

EI(F) = (Planck’s constant) x Y I ( F ) .  

Obviously, if we take for m2 the mass of an astronomical object then (3.7) will be a very 
small quantity. However, if the struck particle has an initial velocity f u  perpendicular 
to and directed towards the light path, one gets a redshift of first order in G. Let us 
sketch the calculation. 

Taking into account the conservation of p g ,  we can obtain the components of n,”, in 
the initial rest frame of particle two. They are 

@F=m2+ Tz=mz+O(G2) 

where the three-vector h is orthogonal to IIII. 

towards the light path, is: 
The zero-component in a frame Ri, moving uniformly with velocity i u  directed 

n&= ( 1 - U 2 ) - 1 / 2 ( n & f  C(/n2FI). (3 -9) 
Neglecting terms of second order in G we get 

II&= (1 -u2)-1’2[m2*u(2m,T2)”2]+O(G2) 

no’ - 2 - 1 / 2  
21 - m2(1 - U  1 

and keeping in mind that 

we obtain the energy acquired by the particle 

H & - n % =  + . u ( l - - ~ ~ ) - ~ / ~ ( 2 m 2 T 2 ) ~ ’ ~  

which must coincide with the energy lost by the photon 

E’ -E‘ - *U 4mzGEf 
(1 - u 2 y  h ’  I F -  

(3.10) 

(3.11) 

(3.12) 

We have taken into account that in this case E;  = EI.  A first-order shift follows from 
(3.12): 

(3.13) 

Westervelt (1971, 1969) reported a shift of *u4m2G/h which is in agreement with 
(3.13) for u << 1. He describes the interaction of light with matter by means of the 
Landau pseudotensor density. 
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